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ABSTRACT 

A geometric method is developed for proving that transformations are iso- 
morphic to Bernoulli shifts. The method is applied to the geodesic flows on 
surfaces of negative curvature and it is shown that they are isomorphic to 
Bernoulli flows. 

The existence of Bernoulli flows, i.e., measure-preserving flows ~bt such that for 

each fixed t we have q5 t isomorphic to a Bernoulli shift, was recently established [8] 

by constructing a special flow over a B-shift. The problem immediately arose 

concerning whether or not any of the classical flows of ergodic theory are Bernoulli, 

and it is the purpose of this investigation to give an affirmative answer. We develop 

a geometric method for proving that a mapping is isomorphic to a B-shift and 

apply it to show that the geodesic flow on a surface of negative curvature is a 

Bernoulli flow.* This means that a mechanical system which seems to be quite 

regular is actually the same, from the point of view of ergodic theory, as the most 

random type of process possible. Because of the isomorphism theorem for 

Bernoulli flows [11], our theorem tells us exactly (up to isomorphism) what the 

geodesic flow on a surface of negative curvature is. It is (after a normalization of 

the time parameter) isomorphic to the simple flow described in [8]. 

An attempt has been made to make the paper accessible to a wider circle of 

readers and so we have not striven for greatest generality. With some modifications 

the techniques used extend to show that a wide class of Anosov diffeomorphisms 

and flows are isomorphic to Bernoulli systems; we hope to return to these matters 

in the future. 

t This result was announced in [9] but the argument envisioned then was incomplete. 
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The necessary preliminaries from the theory of isomorphisms in ergodic theory 

are given in w which is self-contained but for the proofs of Theorems A and B. 

To clarify the ideas we reprove in w the known result that ergodic automorphisms 

of the 2-torus are isomorphic to B-shifts. In w we give the main result that the 

geodesic flow on a compact 2-dimensional manifold of negative curvature is a 

Bernoulli flow. Some acquaintance with the properties of this flow is assumed in 

the discussion. 

1. Approximate independence and Bernoulli shifts 

In this section (X, ~ , # )  is a fixed measure space, p(X) = 1, and ~b:X ~ X is 

an invertible measure-preserving transformation. Partitions of X will be denoted 

by lower case Greek letters, e, fl, y, ... ~ = { A ~ , A 2 ,  . . .  A,}, fi = {B1 ,B2 ,  . . .  Bb}, " ' .  

If  every atom of ~ is a union of atoms of fl then we write ~ _c fl, and ~ v fl denotes 

the least common refinement of ~ and fl, i.e. the partition into sets Ai n Bj. In 

case {el} is an infinite sequence of partitions, Ve, denotes the smallest a-algebra 

with respect to which all the ~ are measurable. A partition ~ is said to be a 

g e n e r a t o r  (this depends on r if V_~o~r =r  where r162162 

Partitions will be thought of as coming equipped with an ordering of their atoms 

and this is inherited in a lexicographic fashion by e v ft. 

A partition a is said to be i ndependen t  for r if for all choices of i j ,  - n < j < n, 

all n 

) (1) # r = p(dp-Jaij). 
n ~ n  

If  ~b has an independentgenerator then ~b is said to be a Bernoulli shift, or B-shift. 

Before formulating some weaker notions of independence let us introduce a term 

for a situation that will arise frequently. If a property P holds for all atoms of a 

partition c~ with the possible exception of a set of atoms whose union has measure 

less than e, then we shall say that P holds for e -a lmos t  every  atom of c~, or that for 

e-a.e, atom A ofc~, P holds. A partition c~ is a K - p a r t i t i o n  if for any B ~ V Y~oqS-"c~, 

given e > 0 there is an No = N(e ,  B)  such that for all N'  > N > No and e-a.e, atom 

A of V~'~bke we have 

(2") [ p ( A  C3 B ) / # ( A )  - #(B)] < ~. 

Clearly B can be replaced by any finite collection of sets. There is a theorem due 

to Pinsker, Rohlin and Sinai ([12 3, [14]) that says in part, that if q~ has a generator 
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which is a K-partition then every partition is a K-partition. In that case we say 

that ~b is a K-automorphism (K-for Kolmogorov, who introduced the notion). 

Not every K-automorphism is a B-shift, (see [10]), but if we strengthen somewhat 

the approximate independence we will get a property which does imply that q~ is a 

B-shift. First we need to recall some distance functions on the space of partitions. 

The usual metric is 

(3) d(~,fl) = • I~(AiAB ,) 
i 

where A A B  is the symmetric difference, (A W B)IA n B. Given two sequences 

of partitions {~i}], {fli}~ possibly on different spaces, we could compare their 

distributions, and we will write 

(4) { ~ , } ]  ,.-, {,8i} ] 

if  for al lki ,  l < i < n  
n n 

where p, v are the measures on the spaces X, Y, ~i = {A~ i), ... __,,A(~ are partitions 

of X, and fl~ = {B~~ ... B~ )} are partitions of Y. We weaken this notion by writing 

( 6 )  - " d@,} , ,  =< 

if there are ~i, fli partitions on the same space such that {~}] ~ {ai} ~ {fl~} ~ ~ {fl~} ~' 

and 

I f E  is any subset of X then ~/E means the partition of E into sets of the form 

A t~ E, A e ~, where the measure on E has been renormalized so that E has measure 

one. A partition ~ is said to be very weakly Bernoull ian (VWB) if for every 

a > 0 there is an No = No(a) such that for all N'  > N > No and all n > 0, e-a.e. 

atom A of V~'q~k~ satisfies 

(8) =< e. 

We can now formulate the main tools at our disposal for showing that trans- 

formations are B-shifts. They are the following two theorems, to be found in [8] 

and [7] respectively. 

THEOREM A. I f  ct is V W B  then (X,  V_~odp~~ "~t,l~,q~) is a B-shift. 

THEORE~t B. I f  d x ~_ d 2 ~ "" are an increasin9 sequence of  c~-invariant 
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a-algebras, V ~ d , = &  and for each n, (X, d~,#,dp) is a B-shift, then (X &,p, dp) 

is a B-shift. 

To apply Theorem A we need a method for showing that partitions are close 

in the d-metric and we devote the rest of the section to this point. The 

{ai}~-name of x is the sequence l, = li(x) determined by 

A (i) = (9) x ~ , , ,  oq {A~ 0, A('), ... A(',)}. 

Let e be defined on the integers by e(j) = 1 for j # 0 and e(0) = 0. 

LEMMA 1.1. Let {~i}~' be partitions of X with name functions li(x), and 

{fli}'~ be partitions of Y with name functions mi(y). I f  there is a measure- 

preserving mapping O: X ~  Y such that 

~ l /n  ~, e( l i (x)-mi(Ox))<8,  x ~ X \ E  
1 

L ~(E)  < 8 
(10) 

then 

(11) d({ }" { f l } " )<4 ~i  17 i 1 ~--- 8. 

PROOF. Let al = 0~i, fli = fly Since 0 is measure-preserving, {O~i}' ~ ,.~ {cq}~; 

in fact, this is the only measure-preserving property of 0 needed here. Note that 

for two partitions ~, fl, if f (x) = I when the s-name disagrees with the fl-name 

and f ( x ) =  0 when the names agree, then 

F 
(12) d(e, fl) = 2 ] f (x)p(dx) .  

Observe that for ~i and/~,, 

(13) f,(y) = e(l,( O- ly) _ m,(y)) 

is 1 if the ~cname disagrees with the ]~cname and is zero otherwise. Combining 

this observation with (12) and (10) we obtain (11). 

A version of Lemma 1 will be needed in which the mapping 0 is not quite 

measure-preserving. We start with a definition. A mapping 0: X 1 ~ X2 will be 

called e-measure-preserving if there is a set E 1 c X1, pt(E~) -<__ 8 and for all 

A ~ XI  \E1 

(14) I ~ z ( O A ) / ~ , ( A )  - 11 =< 8. 

The next lemma is proved by a standard argument and the proof is omitted. 

LEMMA 1.2. I f  O: Xt- '* X2 is e-measure-preserving, and a is a partition of 

Xl ,  then there is a mapping O: X 1 -+ X2 such that 
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(15) 

and 

(16) 
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~{x~: Ox~ ~ Oxl} < 3~. 

Note that, in general, 0 cannot be chosen to satisfy (16) and (15) for all o~ 

simultaneously. Now we strengthen Lemma 1.1. 

LEMMA 1.3. Let {e~}] be partitions of X with name functions li(x ), and 

{/~i}] be partitions of Y with name functions mi(y ). I f  there is an e-measure- 

preservin9 mapping O: X ~  Y so that 

(17) 
1/n e(li(x) - mi(Ox)) < e, 

t_u(~) <__ 8 

x ~ X I E  

then 

(18) d((~,}~, {fl,}'~ _-< 16e. 

Pkoor. Apply Lemma 1.2 with ~ replaced by k/l~i- Notice that (17) and (16) 

imply that (10) holds for 0 with e replaced by 4e. As we have remarked, the proof 

of Lemma 1.1 will apply to 0 and thus (18) follows. U 

In applying Lemma 1.3, one of the measure spaces will be a subset of a given 

measure space, and then e-measure-preserving should be understood with the 

measures involved renormalized so that they all have total measure one. The 

knowledgeable reader will no doubt wonder that no mention has yet been made 

of entropy. All of the systems that will be discussed have finite entropy and thus 

the results of [1 1] on isomorphisms of Bernoulli flows together with Theorem 3.1 

imply that, for some scaling of the time parameter, any two geodesic flows are 

isomorphic. Indeed, in [11] it is shown that if h(95~) = h(~l) for two flows and 951 

and q~l are both B-shifts then the flows are isomorphic. Since h(95,)= ]tlh(951), 

entropy provides the right scaling of the time parameter. To be sure, entropy plays 

a decisive role in the proofs of Theorem A and B, but no knowledge of it is required 

in the applications, as we shall see below. 

2. Automorphisms of the 2-torus are B-shifts 

The method that will be used to prove that certain transformations are B-shifts 

applies to those oft-studied transformations, the automorphisms of the torus. 
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Since the idea of the proof can be seen most clearly in this simple case we devote 

this section to a proof of 

THEOREM 2.1. An ergodic automorphism of the 2-torus equipped with 

Lebesgue measure is a B-shift. 

Henceforth, we shall be dealing only with topological spaces and the a-algebra 

of measurable sets will always be taken to be the Borel a-algebra. In [1] it was 

shown that these automorphisms are Markov shifts while in [6], Theorem 2.1 

was proved for the n-torus. The method of proof given below applies to auto- 

morphisms of the n-torus that have no repeated eigenvales of modulus one. For 

that case, it seems that the harmonic analysis of 1-6] is the most convenient tool. 

Before coming to the details, let us sketch the idea of the proof. By Theorems A 

and B of w it suffices to show that a refining sequence of partitions of the torus is 

VWB. Let ~ denote a fixed partition and A an atom of V ~ k a .  By Lemma 1.3, to 

see that ~ is VWB we must map A onto the torus by a mapping 0 that is nearly 

measure preserving and that has the additional feature of keeping x and Ox close 

together under the action of 4) k, k > 0. The construction of 0 is done in two steps. 

First, an auxiliary partition fl is chosen which depends on e. Then the fact that the 

automorphism is a K-automolphism is used to give a rough, nearly measure- 

preserving mapping from A onto atoms of fl by mapping A ~ B onto B. The 

contracting and expanding foliations are used "locally" to give a nearly measure- 

preserving mapping 0 from A n B to B such that {~kX}n 1 is close to {~i)kOx}n l, 

This is done by keeping Ox on the contracting fiber that contains x. After this 

sketch we turn to the details. 

Let X be the 2-torus and # the usual Lebesgue measure on X. An algebraic 

automorphism q~ of the torus X is defined by an integral unimodular 2 x 2 matrix 

�9 . Since �9 is unimodular it preserves/~ and we have a m.p.t. (X, p, ~b) which we 

wish to show is a B-shift. The key to the proof is provided by certain invariant 

fiberings or foliations which we proceed to describe. The ergodicity of q5 means 

that no eigenvalue of �9 can be a root of unity, which in this case means that �9 

has two eigenvalues 21,22 with 1)ol I < 1 < 1221. Consider q5 as a linear trans- 

formation of R 2 and then project the families of lines in the plane parallel to the 

characteristic directions of �9 to get two ~b-invariant fiberings of the torus, g and 

ca. Let d~ denote the line through x e X that is parallel to the characteristic direction 

associated with 22. Since 1421 > 1, it expands when q~ is applied to it; that is, 

if Yl, Y2 e gx are separated by a distance d measured along gx, ~byl and q~Y2 which 
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lie on C,x are separated by t 22 I" d, along C ~x. ~ corresponds in a similar way to 

2~, and these are just the simplest kind of expanding and contracting foliations 

for a transformation ~. With C and ~ fixed, a set A will be called a parallelogram 

if it is connected, its closure equals the closure of its interior points and for any 

x , y  ~ A the connected component of cr n A that contains x intersects the con- 

nected component of Cy n A that contains y, in a unique point z E A. 

CONVENTION. If  A is a parallelogram then for x e A, Cx n A will denote the 

connected component of C:, n A that contains x. Similarly for c~ A A. 

Let ~ = {A1,'" Aa} be a fixed partition of X which we want to show is VWB. 

The only regularity condition that we shall impose on ct is (RA): Each atom is a 

set with dense interior points and the boundary of As consists of a finite number 

of smooth curves. Suppose that e > 0 is given and that fl is an auxiliary partition 

which will depend on e. For the meantime we merely assume that fl = {Bo, B1,'"Bb} 

where the B~ are parallelograms, for 1 _< i < b, and the measure of Bo is small. 

A set E c X is said to intersect B~ in an g-tubular subset of B~ if x e E r3 B~ implies 

that C~ n B~ ~ E r3 B~. Our first observation is that for N sufficiently large, most 

of an atom A in Vff'~kct intersects each B~ in an g-tubular subset. For this it 

suffices to prove: 

LEMMA 2.1. Suppose that ~ is a partition satisfying (RA), B is a parallelogram 

and 3 > 0 is given. There exists an N1 such that for  any N ' >  N > N1 and 

8-almost every atom A e V~'c~k~ there is a subset E c A with 

(1) It(E) ~It(A) > 1 - 3, 

(2) E intersects B in an g-tubular subset. 

PROOF. By the invariance of the foliations it follows that operating by q5 does 

not affect the tubularity of intersections. Let G k denote the non-tubular intersections 

of atoms of ~bk~ with B; that is, Gk is the union over ~bkA e q~k~, of the non-tubular 

intersections of B with ~bkA. The non-tubular intersections consist of all x e B n~bkA 

for which C~ n B is not contained entirely in B N ~bkA. To estimate the size of GR it 

is convenient to apply q~-k. Since B is a parallelogram and the foliation o a contracts 

exponentially with negative powers of ~b, any point in a non-tubular intersection 

of A with ~b-kB must be within distance dk of the boundary of A, where d k satisfies 

(3) d k < C. 1).2 [-k. 

From (3) it follows that 
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(4)  (Gk) < C-l  l -k 

since the boundary of A is smooth. Now le1 N~ be chosen large enough so that 

(5) ~(G) < ~ ~(G~) < ~2 
k = N 1  

oo where G = k.Jl~lGk. Now for N ' >  N > N1, b-almost every atom of V~'~bka 

intersects G in a set of relative measure at most ~, since otherwise, adding up over 

those atoms that intersect G in a set of relative measure greater than ~, we would 

contradict (5). This clearly implies the existence of E c A satisfying (1) and (2) 

for 6-almost every atom of ~/~' ~ .  

LEMMA 2.2. Let 6 > 0, ~ be a partition satisfying RA and B be a parallelo- 

~lram. Then there is an N2 such that for any N'  > N >= N2, and 6-almost every 

A e VI~'~)ko~ we have 

(6) I / x (A 1'3 B) - I 

PROOf. This follows immediately from the fact that tk is a K-automorphism, a 

result due to V. A. Rohlin [-13]. It can also be obtained, in this case, by using the 

irrationality of the eigenvalues and Kronecker's theorem on uniform distribution.Vq 

These first two Iemmas enable us to reduce the problem of mapping atoms of 

V~'~bk0t onto X in a way which keeps positive orbits of nearby points close 

together, to a local problem of mapping 8 tubular subsets of parallelograms in such 

a fashion. It is the generalization of this next lemma that causes the difficulties in 

the generalizations and so, in spite of its simplicity in this setting, we call it: 

MAIN LEMMA. Given 6x > 0 there is a 62 > 0 such that i fB is a paralleloyram 

of diameter less than 62 and E is an C-tubular subset orB, there is a one-to-one, 

onto mapping O: E-> B such that 

(7) 0 is measure preserving 

(8) d(~bkOx, dpkx) < c51, for all k >= O, xEE.  

PROOF. ]fc52 is small enough then (8) will be satisfied provided that Ox e c ~  n B, 

since distances contract as q~ operates on ~. Let Xo be some fixed point in the 

interior of B, and define 0 on E n ~ o  n B as some one-to-one mapping of 

E r ~ o  C3 B onto c6~o n B which preserves linear Lebesgue measure. There is a 

natural one to one mapping nxo,~ between ff~o ~ B and ~f~ c~ B for any x ~ B, 

which satisfies Itxo,~(y)e(Nr C3B)r3(~ riB) and which preserves the linear 

Lebesgue measures. Use these z~ . . . .  to define 0 on rg x ~ B by rCxo,:fln~o! ~. This is 
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possible since E is a tubular set. By Fubini's theorem, the mapping 0 so defined on 

E (3 B is measure preserving and so (7) holds. As we have remarked, (8) holds if 

62 is small enough, where thi~ choice clearly depends only on 6x and the eigenvalue 

22. [] 

LEMMA 2.3. Let e,8' > 0 and let ~ be a partition that satisfies (RA). Then 

there is an N such that for all N ' > _ N  and for 8-almost every atom 

A ~ ~/~'4)ka there is a set E = A, and a one-to-one mapping 0 of E onto X such that 

(9) I~(E)/#(A) > 1 - 8, 

(10) 0 is 8-measure preserving, 

(11) for any k > O, x 6 E ,  d(dpkx, dpkOx) < 8'. 

PROOF. Apply the main lemma with 62 replaced by 8' to obtain 62, and let 

fl = {Bo,B2, "" Bb} be a partition of X such that the Bi are parallelograms, for 

1 _< i -< b, with diameter no greater than 62, while #(B0) < 8110. Such partitions 

clearly exist. Combining Lemma 2.1 and 2.2 we can find an N such that for 8-a.e. 

atom A of vN'~)ko~ there is an E c A with (9) holding, and for all Bj 6 fl, 1 __< j < b, 

b 

(12) ]~ I kt(E t3Bj)/tt(E) - #(Bj)] < 5, 
j = l  

and furthermore, E intersects Bj ~ tubularly, and E 53 Bo = J:~. Apply the main 

lemma to E 53 Bj, for each j separately, 1 =< j =< b and combine the resulting 

mappings to a mapping O:E ~ X.  

The main lemma implies that (11) holds while (10) follows from (12) and the 

fact that 0 is measure preserving on each E 53 Bj. [] 

For further generalizations note that in the proof of this lemma it was not 

essential that the partial mappings, given by the main lemma, were actually 

measure preserving. It would have been sufficient to know that they were 8/10- 

measure-preserving, for example, if we had, in addition, replaced e by 5/10 in 

(12). The next, final lemma will bring us directly to the proof of the theorem. 

LEMMA 2.4. Given a partition ~ that satisfies (RA) and an e > 0, there is an 

N such that for all N '  > N and 8-a.e. atom A of Vff'4)~a 

(13) d@-'c~ I A}L {4,-'c~}~) < 

for  all n >= 1. In other words, any partition that satisfies (RA) is VWB.  

PROOF. We would like to use Lemma 2.3 in order to apply Lemma 1.3. First, 
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observe that the {qS- ~}-names, as well as the {tk- ~I Ei}-names of  a point x are 

determined by the a-name of ~b ~x. Since the atoms of ~ have smooth boundaries 

if e' is small enough, conclusion (11) of Lemma 2.3 implies hypothesis (17). This 

is a consequence of the fact that if ~' is small enough, the set of points x, y such 

that d(x, y) < e' and x and y lie in different atoms of ~ is of arbitrarily small 

measure, and averaging over 1 < j < n leads to (17) in Lemma 1.3. Now choose 

N large enough so that Lemma 2.3 holds with e replaced by e/16 and e' small 

enough to ensure (17) in Lemma 1.3 with e/16. Extending 0 arbitrarily to A \ E  

and applying Lemma 1.3, we get (13). []  

PROOF OF THEOREM 2.1. Lemma 4 and Theorem A say that if ~ is any partition 

that satisfies (RA), ~ is a B-shift on (X, k/~oo~b~,/~) and since one can easily 

construct an increasing sequence ~ ___ ~2 ~ "'" of such partitions with V ~0~ the 

full a-algebra of Borel sets, Theorem B completes the proof. [] 

3. Geodesic flows 

A classical example which has played a very important role in the development 

of ergodic theory is the geodesic flow on a surface of negative curvature. Let M 

be a complete Riemannian manifold and X its unit tangent bundle; that is, 

x ~ X is a pair (p, u) where p is a point of M and u is a unit tangent vector to M 

at p. The geodesic flow ~b : X ~ X is defined by ~b (p, u) = (p', u') where to obtain 

(p',j') one constructs the geodesic on M that passes through p in the direction u, 

and then one moves out along the geodesic for a distance t, measured in arc 

length to reach the point p ' ;  u' is the direction of the tangent to the geodesic so 

constructed at p'. The completeness of M guarantees that ~b t is well-defined for 

all t. Clearly ~tqS~ = q~t+~, and one easily checks that q5 preserves the natural 

volume on X, denoted by/~, so that we have a measure-preserving flow. Sub- 

stantial progress was made in the study of the ergodic properties of such flows in 

the 1930's by G. Hedlund, E. Hopf  and others (cf. [-3], [4] and [5]). After a period 

of quiescence, the subject was revived and advanced about a decade ago with 

the work of Anosov, Arnold and Sinai, a detailed account of their work may be 

found in [2] which will be the basic reference for this section. Our goal in this 

section is to prove that if M is compact, two-dimensional with negative curvature, 

then ~ is a Bernoulli flow; that is, ~t is a B-shift for each t. To minimize the 

geometrical argument at this stage, we do net develop the most general result 
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possible. We shall follow closely the line of proof in {}2 and begin by fixing the 

notation and generalizing the notion of a parallelogram. 

Let M be a compact two dimensional Riemannian manifold of class C 3 with 

curvature K that satisfies 

(1) K < 0 

throughout M. As above, X will denote the unit tangent bundle of M and ~b t : X ~ X  

the geodesic flow. If  dA is the areal measure on M then ~b, preserves dAdu where 

du is the usual Lebesgue measure on the circle. Denote dAdu by dp. 

The key to the mixing properties of ~bt lies in the existence of expanding and 

contracting foliations invariant under 4~t. These were used more or less explicitly 

by Hedlund and Hopf to prove ergodicity, and then were the main tool in the 

proof of Anosov and Sinai that ~b~ is a K-flow. The basic properties of these 

foliations were known to J. Hadamard and E. Cartan, although not explicitly as 

foliations; for a brief discussion with references see [2, w Example C]. For the 

properties we shall need of these foliations see [2, w There are two foliations 

of X into differentiable curves, denoted by 8 and ~, which are mutually transversal 

and transversal to the flow direction. They are invariant under q~t; i.e., ~btg x 

= ge,x, ~bff~, =c~e :  and q~t expands distances along 8 exponentially while it 

contracts distances along ff exponentially as t ~ + ~ .  Naturally, by its very 

definition, ~b t preserves another foliation, namely the foliation of X by the orbits 

of {~bt}, and ~b, preserves distances along this foliation. The parallelograms that 

played a central role in the main lemma of w are replaced by P-sets which we 

now define. Start with a small connected segment ~ c c~xo of the ~'-foliation, form 

the su r f ace  [_J~~ = C and then move ff  along 8 to another surface of that 

type. That is, for each x e C, take a segment of 8~ that starts at x and ends at e(x) 

in such a way that 

t l  

(2) U e(x) = U err', 7' c c~ x, 
x ~ C  t = 0  

for some x'. A P-set is then a set of the form 

(3) B = LJ ~x,e(x) 
x ~ C  

where 8x1,~ , is the segment of gx, that connects x, to x z e ~ , .  We assume that 

the lengths of ~,~(~) are bounded away from zero and infinity. 
First we establish the analogues of Lemmas 2.1 and 2.2 in order to reduce our 

problem to a local one. The convention that o~ n A denotes the connected 
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component of 8~ n A that contains x will be made as in w An g-tubular subset 

of a P-set will be defined as before; namely, E is called an g-tubular subset of a 

P-set B if E ~ B, and x E E implies gx n B c E. The partitions which we shall 

show are VWB should satisfy some mild regularity assumptions such as: (RA) ~ is 

a finite partition each atom of which is connected with dense interior and has a 

smooth boundary. 

For  the remainder of this section we fix a time to, denote ~to = ~ and concentrate 

on showing that q~ is a B-shift by following the pattern of proof in w 

LI~MMA 3.1. Suppose that ~ is a partition that satisfies (RA), B is a P-set 

and 6 > 0 is given. Then there is an N 1 such that for any N'  >= N >= N l , f o r  6-a.e. 

atom A of V~'~k~ there is a subset E c A with 

(1) i~(g)/l~(A) > 1 - 6, 

(2) E n B is an g-tubular subset of B. 

PROOF. For  each k, consider tpk~t and let Gk c B denote that part of  B that is 

intersected by an atom A (k)of ~k~ in a non-g-tubular fashion; that is, x e Gk if 

for some atom A(k)~ ~pk~ 

(3) X ~ A (k) n B, and there exists y e g~ n B, y ~ A <k). 

We wish to estimate the size of Gk, and to this end note that since the foliations 

are ~b-invariant, the tubularity of sets is not affected by applying the transformation 

~b. From the definition (3) we see that c~-kGk lies in the set of points whose distance 

to the boundary of some atom of ~ is no greater than dk, where dk is the maximal 

length of a connected segment of an g-fiber in dp-kB. Since ~ satisfies (RA) the 

measure of this set is thus bounded by a constant times d k. The exponential 

contraction of g as t ~ - ~ ,  and the definition of a P-set imply that 

(4) ~ dk--*0 as N ~  c~. 
N 

Since ~ is measure-preserving we can conclude that ]~/~(Gk) tends to zero as N 

tends to infinity. Choosing N1 so that 

(5) ~.a 1.1(Gk) < 6 2 
NI 

we have that 6-a.e. atom A of Vg'~bkcr (N _>__ N~) intersects Uff~G k in a set of 



(8) 

(9) 

PROOF. 

form 

(10) 
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measure at most 5p(A); letting E = A n (X / [,-J~Gk) for the good atoms, we have 

that (1) and (2) hold. [] 

LEMMA 3.2. Let ~ be a partition that satisfies (RA), B a P-set and suppose 

that 6 > 0 is given. There is an N z such that for any N'  >_ N > Nz and 6-a.e. 

atom A of ~/g'(oka we have 

(6) I l~( B C~ A/l~(A) - /2(B)  ] < 5. 

PROOf. D. V. Anosov and Ya. G. Sinai have proved that q~ is a K-automorphism 

[2, w and Appendix] whence (6) follows. [B 

At one stroke we have been able to reduce the problem of showing that a parti- 

tion a that satisfies (RA) if VWB to a local problem involving the local structure 

of 8 and ft. One can extract the geometric information that is needed to prove the 

main lemma from the work of Anosov and Sinai on "absolute continuity" of the 

foliations E and ~, and indeed this approach is necessary for higher dimensional 

generalizations. However, for dimension 2, we can give a cleaner argument by 

using the more precise results of E. Hopf. Translating the results of [5, w 7] into 

our terminology leads to the following: 

THEOREM H. Local C 1 coordinates can be introduced in X,  (oq, o~2, S) such that 

(7) ~b (~1, ~z2, s) = (~1, ~z, s + t) 

and the surfaces al = constant, ~z = constant correspond to the surfaces obtained 

by taking a segment ? of g or ~,  respectively, and forming [..Jltl< to ~bt? �9 

The content of the theorem lies of course in the statement that the coordinates 

are C 1. We are now in a position to prove 

MAIN LEMMA. Given ~1,61 > O, there is a 52 > 0 such that if B is a P-set of 

diameter less than 62 and E is an g-tubular subset of B, there is a one-to-one 

mapping O: E ~ B such that 

0 is et-measure-preserving, 

d(d?~Ox, c~kx) < 51 for all k >= O, x ~ E. 

In the coordinates of Theorem H, the invariant measure d/z takes the 

dp = P(~I, ~a)d~t d~2 dt 

for some smooth function p. First, choose 62 small enough so that p(a~, ~2)is 
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nearly constant on sets of diameter less than 62, where nearly constant is relative 

to el in the sense that we require for (~1,~2), (~1,~2) in the same set B: 

(11) I p(~l,~2)/p(~l,~2) - 11 < e 1/10. 

Then, choose 62 still smaller, if necessary, to ensure that if d ( x , y ) <  62 and 

eE(X) = ez(Y), then for all k > 0 

(12) d(c~kx, e~ky) < 61. 

The reason that this is possible is that if ~2(x) = c~2(y), then for some tl bounded 

by a constant times d (x, y), x = (cq(x), c~2(x), s(x)) and y '  = (cq(y). c~2(y), s(u) + h)  

lie on the same contracting fiber of~g; thus (12) certainly holds with y replaced by 

y' .  But if 62 is small enough, taking note of (7) we would then get (12) as written. 

Having chosen 62, we construct 0 in a fashion similar to that used in the proof 

of the main lemma in w Let us call an g-tubular subset E c B simple if it has 

constant width in the direction t. For a simple g-tubular subset E c B, the planes 

ea = constant intersect E in sections of equal planar measure, and since B itself 

is a simple g-tubular set, we can map E onto B along planes ez = constant in a 

fashion that preserves the measure de~ d~2 dt. Now approximate an arbitrary 

g-tubular subset by simple ones, use (11) to go from de1 de2 dt to dp and note 

that (12) implies (9) if x and Ox lie on the same surface, ea = constant to complete 

the proof. [] 

LEMMA 3.3. Let ~,5' > 0 and c~, a partition satisfying (RA), be given. Then 
there is an N such that for all N '  > N and ~-a.e. atom A ~ ~/~'c~Je there is a set 
E c A and a one-to-one mapping O: A ~ X  such that 

(13) p(E)/p(A) > 1 - 

(14) 0 is e-measure-preserving 

(15) for any k > O, x e E, d(dpkOx, c~kx) < 5'. 

PROOF. A standard covering argument shows that for any 6, we can find a 

finite number of disjoint P-sets, B1,B2,... Bb, of diameter less than 6 such that 
b B o = X \  LJIB~ has measure less than 6. Using the partition /3 = {Bo,B1,...Bb} 

and the preceding lemmas, the proof of Lemma 2.3 can be applied to yield Lemma 

3.3. [] 

LEMMA 3.4. Any partition ~ that satisfies (RA) is VWB for dp. 

PROOF. The deduction of Lemma 3.4 from Lemma 3.3 is the same as the proof 

of Lemma 2.4 [] 
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THEOREM 3. The  oeodesic f low on a compact  C2-mani fold  o f  negative cur- 

vature is i somorphic  to a Bernoul l i  f low. 

PROOF. One can find a sequence o f  pa r t i t i ons  ~x c 0~ 2 c . . .  C (~i C . . .  tha t  

satisfy (RA) and  such tha t  V ~ct, is the full  a - a lgeb ra  o f  Borel  sets. Then L e m m a  

3.4, and  Theorems  A and  B imply  tha t  ~b = (~to is a Bernoul l i  shift. Therefore ,  (kt is 

i somorph ic  to a Bernoul l i  flow. [ ]  
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